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In computer simulation studies, sectioning (also called batching) has been used to estimate variances, and hence to derive
counfidence intervals. In this paper we give some theory for improving the sectioning technique for constructing confidence
intervals. The improvements are based on Edgeworth expansions and are analogous to techniques for improving the hootstrap

by pivoting and iteration. An example ilustrates the method.

1 INTRODUCTION

1.1 Background

Typically, computer simulation experiments are used to
construct simple random samples from a distribution, in
the following way: a stream of independent and identi-
cally distributed (47d) random numbers is generated and
passed as input to a subprogram which computes a de-
terministic transformation of the stream, producing as
output a stream of independent randorm numbers which
also have the same distribution, different from that of
the inputs. The important point for us here is that we
assume the outputs are an iid random sample. We as-
sume that the goal of the simulation is {0 measure a
scalar characteristic of the distribution of the outputs.

Whern computer simulation is used to obtain a point
estimate of a parameter in a model, it is important also
t0 obtain estimates of the sampling variability of the es-
timate. It is often the case that the process being simu-

lated is too complex for analytical or asymptotic calca-
lations of sampling variances to be attempted, so alter-
natives must be found. Lewis and Orav (1984, Chap. 9)
describe sectioning: compute estimates based on inde-
pendent subsamples of the data and use the variability
of these estimates to estimate the variability of the es-
timate computed from the entire sample.

If measures of variability such as confidence intervals
are to be constructed, then this approach is based on an
assumption that the empirical distribution of subsample
estimates is sufficiently close to normal. {See Lewis and
Orav, 1989, p259, for example.} Often, this assump-
tion is demonstrably false (Lewis and Orav, 1989, Fig-
ure 9.3.3, p266) so there are limitations on its use in this
form. In section 2, we give a description of sectioning in
more detail, and cutline some improvements.
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1.2 Helated technigues

The ideas of “typical values” and random subsampling
are also present in the work of Hartigan and Carlstein
{e.z. Hartigan, 1967 and Carlstein, 1986). In their work,
the subsamples are selected from a given sample rather
than from simulation. However, apart from the differ-
ence that subsamples are constructed {rom samples in
the Hartigan and Carlstein work, whereas in computer
simulation it 15 more likely to be the other way round,
the relationships between samples and subsamples are
very similar in the fwo circumstances.

It is clear that there are also similarities between sub-
sampling and resampling techniques such as the boot-
strap. The main motivation for what follows is this com-
parison. We have asked what effect the improvements
such as pivoting and Heration, so useful for the hoot-
strap, can have on the performance of the subsampling
bechnigues. The partial answers are the basis of this
paper.

2 BECTIONIMNG

2.1 The sectioning procedure

We give a terse deseription of the sectioning procedure.
More details may be found in Lewis and Orav {1989,
Chap. 9), where applications are also described,

Let S....,5p be independent simple random sam-
ples of size b from the same distribution, and suppose
we wish to estimate the scalar characteristic 4 of the
distribution. Let # dencte an estimalor of # based
on a sample of size & Let 0y be the frue value of 0
and let n = I3b be the sample size. We shall refer to
& =48, U...U Y as the sample and to the 5; as the
subsampiles, sections or blocks.

Let Hév) denocte an astimate of § based on the section
;. The subscript b indicates the sample size. The sec-
tioning heuristic is that the distribution of the (jéﬂ {as
i varies) is an approzimation to the sampling distribu-
tion of 0y, and hence provides information about the
sampling distribution of .

Mote that the sample sizes for £, and #, are differ-
git, s0 some adjustment has to be made for this. In the
examples in Lewis and Orav (1989), this adjustment is
not made explicitly but instead indirectly through a nor-
mality assumption and estimation of the standard devi-
ation. The examples given in thai book also show that
the method can [ail o provide good confidence intervals
if the normality approximation is not good.

Briefly, the methed of Lewis and Urav is to compute
the (sample) variance of the @:;” and nse this as an es-
timate of var{(:jb}. Assuming that var((jn} s of precise
order 1!, they then inflate the estimate of var{(jb} via

var(G,) = (3) var(fy).

n

Confidence intervals are then based on an asympiotic

normality argument. A similar technique is discussed
in Klejjnen (1988) where it is called batching. See also
Schmeizer {1990).

2.2 Percentile confidence intervals from section-
ing

If one takes the sectioning heuristic seriously, then, in-
stead of the normal approximation, one might consider a
t:orz'flcl}ez]{:cz interval based on the observed distribution of
the (}Ef}. It is necessary in this case also to adjust for the
fact that the sammple sizes b and n are different. In order
to see how to do this, we first consider the Bdgeworth
exxpansion of the distribution of the estimator.

For any &, let o7 be the asymptotic variance {assumed
- 104 . .
finite} of Uy = k% (0 — 0} and tet £} denote the distri-
bution of I/:

Then under sufficient regularity conditions (ses Remark
below), the Idgeworth expansion is valid:

File) =@ (é) +itp (2 (%) SO (1)

where &, ¢ denote respectively the edf, pdf of a standard
normal variate, and p is & poelynomial independent of 4.

Now we find easily that

() — (Ti) Pz}
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where the term which is 2(n™?) has been dropped be-

. i
cause b < 1, which makes n~t = 0 (b N 2).

kope

Suppose we have available an estimate &, of ¢ which

. . i
is accurate to precise order O ( n h)

N

o =040y (ﬂ{‘) {3)

Estimate £y in the natural way: by putting Fy{z) =
proportion of section estimates < .

Since there are n/b sections, and the number of sec-
tion estimates < 1 13 a binomial variable, we have

K3

Fofe) = Rh(2) + Oy (ﬂ)é W

{Again the order statement is precise. )

Byle)+ 41~ (%)

Now put
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tai—

PR
=2
AT
ok
S



There are two sources of error in this as an estimator
of F(x): the error in estimating Fi(z) by Fi{r) and
the error in ® (r/d,) due to estimating 0. The former
is obtained from (4}; the latter is obtained by noting
that it follows from (3) that

@ ((_;:) =& (%) +0, (n"'"‘-&) . (6)

Comparing (5) with {6), we see that

Fola) = B (a) + 0, (b) +0, (n1).

1

Let b be of precise order n”. Trom (6), we see that,
provided 0 < § < 1, the error is O, (n---%), while if

8>3, the error is Oy (nf71).

We see that this method approximates to the same or-
der of accuracy as the normal approximation, provided
6 <4< % I we use guantiles of F, to construct
confidence intervals then they will have the same order
of coverage acouracy as the normal approximation, and
the endpoints of the intervals will also have the same
order of accuracy as those constructed via the normal
approximation. We do not pursue this further because
we are now in a position to see from our derivation of
{6) how tc improve our estimation procedure. The key
to this improvement is to consider the empirical distri-
bution of a pivot instead of Uy, We turn to this in the
next subsection.

Remark 1 We assume thal all Edgeworth cxpansions
that we write down make sense: in particular, they er-
ist as asympiotic series, and have uniform error terms.
For definiteness, the reader may safely assume that the
estimator O, is a “smooth function of means”. Details
of this idea are in {Hall, 1898, Chapter 2) but it s worth
pointing out kere that means, variances, covarionces and
correlations are all examples of such statistics. An im-
poriant example not included in this formulation s the
studentized quantile. {(Compare Hall, 1992, Appendiz

v.)

23 Using a pivot

It is well known that for the bootstrap one way to
achieve better accuracy in the estimation of confidence
intervals by percentile methods is to apply these meth-
ods to a pivot instead of the generally non-pivotal statis-
tic U/ in the last subsection. See Hall (1492} for a de-
tailed exposition. We apply these ideas to the case of
sectional estimates.

We define T}, = Up/d,. Then 1, is asymptotically &
pivos (i.e. has an asymptotic distribution independent
of the values of the parameters). We set

Grlz) =P{T <z}
Then, under regularity conditions, we have

Gilz) = (z) + &~ *p(a)e(z) + Ok™Y)  (8)
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where &, ¢ are as belore, p is a polynomial independent
of k. Now (2) is replaced by

i

G = (1) Golo) o)

= {]A(%)%}{Iﬁ(:r)+0(b"%'n_é). (10}

- Weestimate G by (4 Gy} = proportion of secticus
in which T3 < z. As before,

Ga(z) = Colz) + O, {(%) 2} (11)

and so if we set

() = (2) Ct() + () { - (i)} 02

then
. f
(o) = Gale) +.0, (2. 02)

n

{(The ignored order term in (3) is of smaller order.)

The important difference between (8) and (12) is that
the Op(n~*) term is missing from (12}. If we take b to
be of precise order n¥ then provided 0< § < -;m, the es-
timate (12) is better than that in (19). Indeed by taking
£ small we can obtain accuracy arbitrarily close (=0
gives same accuracy} to the estimate that is obtained
via the percentile-l bootstrap, which has error Op{n™").
In the case of the bootstrap, expressions like (12) lead to
higher order accuracy of confidence intervals. {See Hall,
1992, Chap. 3.) From (12) it is now easy to construct
confidence intervals and to compute their coverage ac-
curacies. We illustrate this in the next subsection for a
particular case.

24 The percentile-i method

For 0 < v <1, let vg.”},'ugw denote the y-quantiles of
Gy, G, respectively.  In this subsection we show how
these two quantities are related, and how this makes it
possible to see that the percentile-i confidence intervals
have coverage properties better than those obtained by
the normal approximation. The discussion is based on
the account in Chapter 3 of Hall (1992), in which the
theory of bootstrap confidence intervals is developed.
Our example shows how the bootstrap theory is easily
adapted to our setting.

Because of its simplicity, we consider first the one-
sided level-a confidence interval:

Iy = {—~o00, (- ‘ra_%&ﬂvg}a . (14)

Since

l—a = Gn(fug’l)a
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{1 <o,
P {’H-%(én — o)/ d, < UE”L}

B {0 = 6y —n 300", |
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il

we see [, has coverage probability o as required.

The difficulty with 7, is of course that we do not
] T 3 .
know the value of ‘UY___)Q. We consider now the question
of estimating it.
Cornish-Fisher expansions, inverting the Edgeworth
expansions (7), lead to

bz ) O (1)

and
b L Ly _—
WP = i~ b () BlEa) OO (16)
Here p is the same polynomial as appears in (7).

{Compare Hall 1092, 1 88} From these equations we
obtain

,J J}»
) . Dy L8
TP (:;;) Uil -+

O (.b"%n'*%‘) , (18)
AN

which gives us the relationship between lhe theoreti-
cal gquantiles. We have available a natural estimator of

PRI
Uir—r,'n " X
3 = (1 — e)-quantile of G
Since N
T:‘E’f}q = LJY??Q - O'p (;)

il we put

L
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we obtain

[ & - b .
'ij’g,,f]rx = Ug---)q. 4~ ()}'J (E) . {2{))

We consider new how using this estimate affects the
coverage probability of the corresponding interval

= a A adn) .
Iy = {~co b, —n 2(_7,,‘0}_?_’“). i21)

We see immediately that the upper end-point of the
imberval f,_,. differs from that of 7, by a term which s
Op(b';‘a”%), because of (20), and so we can write I in
the form

(00,00 = 20,0, +8)

where § = Op(bn™ "), from which it follows by a Tavlor
series argument that the coverage probability of I is

Ploel.} =a+ o). (22)

To see that 1, constracted in this way I$ an anprove-
ment over the confidence interval constructed by a nor-
mal approximation, let b be of precise order 28 and sup-
pose 0 < 7 < % {This is the more favourable case. See
remarks following {6}.) Then the normal approximation

can he seen Lo have coverage errors of order ()p(nf%),
by & Teylor series argument similar to that leading to
(22); on the other hand, in this case the coverage error
of I, is (_)p(’f?-ﬁ"' Y, by {22), which can be made arbitrar-
ity close to O,(n"'), the bootstrap mterval error, by
choosing 3 > U as small as we please.

Similar remarks apply to the various other types of
confidence interval described in Hall {1992, Chap. 3).
These resuits can be summarised by saying that for a
percentile-t hootstrap conlidence interval whose cover-
age error rate is Op(n™? / "} 4 > 1, the corresponding
error rate will be O, (bn3%) in the sectioning analogue.
It must be remembered in interpreting these facts that
these results are asymptotic in nature. Finite sample be-
haviour of percentile-f sectioning estimates is discussed
in & simulation study which will be reported elsewhere.

3 ITERATED BECTIONING

3.1 Imtroduction

Despite the theoretical appeal of methods based on piv-
obing, the scope for such methods in complicated situa-
tioms is rather limited, because in such cases it can be
hard to find an appropriate pivot, (This will typically
be the case if the asymptotic variance of the estima-
tor can not be reliably estimated in closed form.} Since
complicated situations are what one expects Lo find in
stmulation studies, it is clear that alternative methods
must be sought.

in subsection 2.3, we described the construction of
percentile confidence intervals from sectioning, and ob-
served that such intervals do not have coverage error
asymplotically better than the normal spproximation
intervals. Fhis state of aflairs i3 analogous with that
obtaining for the bootstrap. A way to improve the cov-
erage properties of bootstrap percentile confidence in-
tervals is to calibrate them. We consider in the pext
subsections how this idea can be applied to the section-
ing percentile inbervals,

292 Calibration of confidence intervals

There are several ways of calibrating bootstrap confi-
dence intervals: bootstrap iteration (see Hall, 1992, Sec-
tion 3.11, for example), pre-pivoting {Beran, 1988) and
those discussed in Lol (1987).

The analogies between the bootstrap and sectioning
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have been repeatedly mentioned; what would the ana-
logue of bootstrap iteration be? In bootstrap iteration,
each bootstrap sample is itself re-sampled, so what we
would expect to do with sectioning is to divide each sec-
tion into subsections. Here we see an advantage of the
bootstrap over sectioning: the sample sizes in each sec-
tion are smaller than the original sampie size, and simi-
larly the subsections are of smaller size than the sections.
It is clear that estimates based on small subsections will
be very variable, With the bootstrap however all the
sample sizes can be kept the same. Because of this prob-
lem of small sample sizes in the subsection, we cannot
recommend this analogue of the iterated bootstrap.

However, we do have another proposal to offer. The
idea of using the booistrap to calibrate confidence in-
tervals can be applied to many confidence interval con-
structions. It is natural to apply it in our context.

Specifically, lef us suppose we wish to consbruct a one-
sided level-a confidence interval by calibrating a per-
centile sectioning interval as in subsection 2.3 above.
Use the notation of section 2.

An ideal level-3 confidence interval for # would be
(——oo,ygf)}, where

PG I T S £ e
Uy = bn " Foug (23)

and '“'(ﬁn} = f-quantile of £,.

Unfortunately this will not do, as I, has 1o be esti-
mated. The percentile method of subsection 2.3 replaces
T_tf'gb ) by an estimate based on the quantiles of /4, the sec-
tioning approximation of /. That is, we construct the
interval

fﬁ = (‘——oo,g}g”} {24)
where . .
g5 = Oy +nEouY, (25)

and by anology with (13}, (16} we obtain

. .
60 N B RPN CO NI SR 5 :
iy = <n) iy’ 4 {] (n) },3, {26)

where ’Ilfgb} is the fA-quantile of 7.

Since fﬁf) is an estimate, the true coverage of the
interval I, will only be approximately . This idea of
adjusting «a, say to o + £, by estimating the coverage
by bootstrap, while new in this context, may be found
in Hall (1986), Beran (1987}, and Loh {1987). For a
detailed discussion, see Hall (1992, Section 3.11).

We cutline briefly how the algoritlun works, before
explaining the theory behind it.

i,

drawn with replacement from the section & and let 7
denote the corresponding estimate of #.

Let 5%, 7 = 1,...,B be a random sample of size b

For 0 < 8 < 1, let uf(f) be the S-quantile of the
set, {8;} ci=1,..,8}. Let p*(3) be the proportion of
occasions ¢ {out of n/b) on which 8, < w}(3). Thus

p(3) estimates the coverage probability of an interval
constructed using the percentile method with G as the
nominal coverage level. The calibration idea is to use,
instead of &, the o -+ £ for which

pla+) =a,

at least, as nearly as this equation can be solved, al-
lowing for the discreteness of the sampling distributions
involved.

Il we examine the Fdgeworth expansions for s Fh,
and mvert them as we did to obtain g 15}, (16), we obtain
for any 3

uf) = o — b T ples)plzs) + O ), (27)

with an analogous equation for 1.',,;9(“),
It follows that the coverage probability w, (8) of f 318
P {0,,§5n T éO(Z;g - ':a‘ép{zﬁ)c,ﬁ(;a) + O(n” ’(Qﬁ}

= 3y ép{‘z,@)a’z(zﬁ) + O(n_} ).

{Compare Hall (1992, p 102).) Thus il we wish to chose
£, such that Trn(a' -+ £, ) = e, then we should take

£n = —n’l‘p(zb}q:’»(za} +0O(n™h. (29)

Hence we can write

1
VAAS n-dpt
f= () avo(aiot), )

where & is obtained by writing & for » in (29). The
advantage of using £, 15 that it may be estimated by
the bootstrap construction. For, the bootstrap enables
us to replace the Edgeworth expansion which leads to
the analogue of (3.7) lor & with an Bdgeworth expansion
which is identical except for the fact that the coefficients
of the polynomials are estimated (rather than theoreti-
cal values) from a section of size & From this it follows
that we may write

: 1. , -
£p = =TT p(an)d{za) + O, {077
where § denotes the estimated polynomial p. Since the
coefficients of § are within Op(b‘%) of those of p,
=&+ 0,071,

i is é,:) that is produced by the bootstrap algorithmn
outlined above,
1 we now compute the voverage probability of the in-
P = .L ~
terval (ﬁoo,;rjc(:r)é ), where we have put &, = (b/n}?&,,

n

we find
Ploo <y, |
- j -4 _=(n)
=P efy <8, +n POU_ e

L

= P{ffo = én + 'n'.iég{za-!-fﬁﬂ P (zﬂx+én) (P (zﬂmtn) +
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since £, = &, + O, (b"éﬂ_f) .

The last display is equal to

p
y
L, .1
0 (-n“ Th >
kS
where ... denotes the remainder of the Cornish-Fisher

: n .
expansion for ufﬁ /., and hence we And
R A

? {0 (~00.0"); )} =at0 (nm¥64).

We see that the coverage accuracy has been improved
by the calibration procedure. The same approach may
be applied to twe-sided intervals, symmetric intervals,
percentile-t intervals, but we do not pursue that further
here.

4 A SIMULATION EXPERIMENY

in Figure 1| we show the result of a simulation exper-
iment in applving the sectioning percentile confidence
interval (section 2.2) to estimalion of the mean of a
standard {mean 1) exponential distribution. One hun-
1 samples of size n = 100were generated , with 20
wobious of & used to compute & nominal 90% confidence
interval. The upper display shows each of these con-
fidence mtervals, plotted from left to right in order of
increasing mid-point. Also shown is the true mean as a
dotted horizontal iine. The estimated coverage proba-
bility is 1 (all the intervals contain 1). The lower display
shows the same thing except that this time a boolstrap
calibration was employed. Now the coverage probability
is .80 (SE= 0.03). As well as being more accurate, the
intervals are as often over {5 times) as under (6 times).
The simple asymptotic Normal approximation performs
poorly, with coverage probability 0.80 (SE= 0.04).
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Figure 1. Results of simulation experiment.

— 124 —




